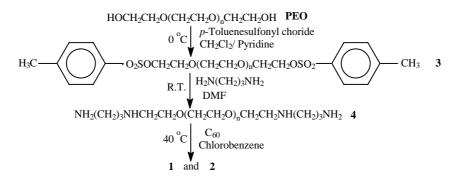
Synthesis and Characterization of C₆₀-Containing Poly(ethylene oxide)

Zhen LI, Pin SHAO, Xi YANG, Jing Gui QIN*

Department of Chemistry, Wuhan University, Wuhan 430072


Abstract: C_{60} -Containing poly(ethylene oxide) (PEO) was synthesized by a new method. Molecular structural characterization for the polymers was presented by ¹H-NMR, infrared and UV-Vis spectra.

Keywords: PEO, C₆₀, synthesis.

 C_{60} has attracted much attention due to its unique properties^{1, 2}, and the grafting of biocompatible polymers onto C_{60} is of special interest due to the potential importance of the fullerene molecule in the biomedical and biotechnological fields³. Poly(ethylene oxide) (PEO) is well known for its remarkable biomedical properties, and some C_{60} -containing PEO have been prepared^{4, 5}. However, the reported methods were not so easy and the reaction conditions were not mild.

Recently we have developed a new method to synthesize C_{60} -end-capped PEO; the method was very easy and the reaction conditions were mild. Herein, we would like to report the synthetic procedure and structural characterization of the end product.

Scheme 1

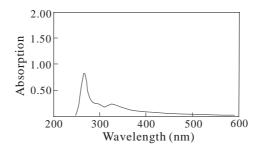
The synthetic route was shown in **Scheme 1**. First, PEO ($M_w = 20000$) was reacted with *p*-toluenesulfonyl chloride to yield **3**, which was then converted to a precursor PEO

^{*} E-mai: jgqin@whu.edu.cn

Zhen LI et al.

possessing amino end-groups **4** in DMF in the presence of 1, 3-diaminopropane. At last **4** reacted with C_{60} in chlorobenzene to give the C_{60} -containing PEO (**1** and **2**), which were purified by several precipitations from chloroform into methanol.

Results and Discussion


1 and **2** have good solubility in common organic solvents, such as CHCl₃, THF, DMSO and DMF, *etc.*, and also they are soluble in water. The UV-Vis spectrum of **1** in chloroform was shown as an example in **Figure 1**. The two peaks at 269 nm and 330 nm were attributed to the absorption of C_{60} . This spectrum confirmed that C_{60} was successfully covalently linked to PEO, since C_{60} was not soluble in chloroform⁶. The C_{60} concentrations (w/w) in **1** and **2** were 0.9 % and 1.5 %, respectively, which were determined by comparing the intensity of absorption peak at 306 nm in toluene with that of pure C_{60} in toluene.

In the IR spectrum of 1 and 2, two new absorption peaks appeared apparently at 527 and 576 cm⁻¹. While 4 did not absorb in this region, these results further proved that C_{60} had covalently bonded to the PEO backbone⁷.

The signals of the phenyl ring of **3** in the ¹H-NMR spectra had completely disappeared in **4**, **1** and **2**. This confirmed that the *p*-toluenesulfonyl groups were replaced by the amino moieties completely. And some new peaks appeared at δ 2.94, 2.87 and 1.62 ppm in ¹H-NMR of **4**, which were assignable to the protons of the propanediamino groups.The new weak peak at 3.48 ppm attributed to the resonance of C₆₀-H in the ¹H-NMR of **1** and **2** to confirm the linkage of C₆₀ to PEO once more⁸.

In conclusion, a new simple and easy method was further developed for synthesizing C_{60} -containing poly(ethylene oxide) (PEO). It can be expected that many other polymers containing C_{60} moieties could be easily prepared by this new and simple synthetic strategy.

Figure 1 The UV-Vis spectrum of 1 in chloroform

Acknowledgments

We are grateful to the National Natural Science Foundation of China and the National Fundamental Key Research Program of China for financial support.

References

1. R. E. Hulfer, J. Conceical, L. P. F. Chibante, J. Phys. Chem., 1990, 94, 8634.

Synthesis and Characterization of $C_{\rm 60}\mbox{-}Containing$ Poly(ethylene oxide)

- 2. K. E. Geckeler, A. Hirsch, J. Am. Chem. Soc., 1993, 115, 3850.
- S. H.Friedman, D. L. Decamp, R. P. Sijbesma, *et al.*, *J. Am. Chem. Soc.*, **1993**, *115*, 6506.
 N. Manolova, I. Rashkov, F. Beguin, H. V. Damme, *Chem. Commun.*, **1993**, 1725.
- Y. Ederle, C. Mathis, R. Nuffer, Synth. Met., 1997, 86, 2287.
 P. Fang, Ph. D. Thesis, Wuhan University, 1999.
- 7. Y. Sun, B. Liu, D. K. Moton, Chem. Commun., 1996, 1699.
- 8. M. L. Miller, R. West, Chem. Commun., 1999, 1797.

Received 3 December, 2002